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Abstract: The United States is experiencing a national 

crisis regarding the use of synthetic and non- synthetic 

opioids, either for the treatment and management of pain 

(legal, prescription use) or for recreational purposes 

(illegal, non-prescription use). In this paper, using the 

NFLIS data provided, build a mathematical model to 

describe the spread and characteristics of the reported 

synthetic opioid and heroin incidents (cases) in and 

between the five states and their counties over time. 

Using the model, identify any possible locations where 

specific opioid use might have started in each of the five 

states. 
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1. Introduction 

The DEA/National Forensic Laboratory Information 

System (NFLIS), as part of the Drug Enforcement 

Administration's (DEA) Office of Diversion Control, 

publishes a data-heavy annual report addressing "drug 

identification results and associated information from 

drug cases analyzed by federal, state, and local forensic 

laboratories." The database within NFLIS includes data 

from crime laboratories that handle over 88% of the 

nation's estimated 1.2 million annual state and local drug 

cases. For this problem, we focus on the individual 

counties located in five (5) U.S. states: Ohio, Kentucky, 

West Virginia, Virginia, and Tennessee. In the U.S., a 

county is the next lower level of government below each 

state that has taxation authority. 

 
Figure 1. The opioid crisis 

Supplied with this problem description are several 

data sets for your use. The first file (MCM_NFLIS_Data. 

xlsx) contains drug identification counts in years 2010-

2017 for narcotic analgesics (synthetic opioids) and 

heroin in each of the counties from these five states as 

reported to the DEA by crime laboratories throughout 

each state. A drug identification occurs when evidence is 

submitted to crime laboratories by law enforcement 

agencies as part of a criminal investigation and the 

laboratory’s forensic scientists test the evidence. 

Typically, when law enforcement organizations submit 

these samples, they provide location data (county) with 

their incident reports. When evidence is submitted to a 

crime laboratory and this location data is not provided, 

the crime laboratory uses the location of the 

city/county/state investigating law enforcement 

organization that submitted the case. For the purposes of 

this problem, you may assume that the county location 

data are correct as provided. 

The additional seven (7) files are zipped folders 

containing extracts from the U.S. Census Bureau that 

represent a common set of socio-economic factors 

collected for the counties of these five states during each 

of the years 2010-2016 (ACS_xx_5YR_DP02.zip).  

2. Models 

2.1. Nomenclatures 

2.2. Assumptions 

BP neural network has strong non-linear processing 

ability. It can solve the problems of unclear background 

knowledge, unclear reasoning rules and complex 

information. It has unique advantages.Based on this, this 

paper establishes a hybrid model based on BP neural 

network and time-space series, and then takes settlement 

monitoring as an example to analyze and verify the 

practicability of the model. 

The NFLIS data set provided was extracted from a 

much larger data set involving the five (5) states noted 

using "Narcotic Analgesics" and "Heroin" reports as the 

target. The variable Drug Reports indicates the number 

of identified drug cases corresponding to these target 

search topics in each county of each state. The variable 

Total Drug Reports County shows the total number of 

ALL identified drug cases in a county, of which 'Narcotic 

Analgesics' and 'Heroin' are a part, if they occurred. 

Because 'Narcotic Analgesics' and 'Heroin' are only two 
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of many types of controlled substances, the sum of Drug 

Reports will not necessarily equal Total Drug Reports 

County for a specific county in a state for each reported 

year. Similarly, the variable Total Drug Reports State 

indicates the total of all drug reports for the state noted. 

However, since the database query was targeting 

'Narcotic Analgesics' and 'Heroin' only, if a county had 

no such identified drug cases but had numerous drug 

cases of other types, the county will not appear in this 

dataset. Thus, the sum of all Total Drug Reports County 

for all counties in a state shown in this dataset for a 

particular year will not necessarily equal Total Drug 

Reports State. 

2.3. The Foundation of Model 

(1) Parameters 

 i: an individual 

 
i : geo-atom 

 
i : geo-semantics 

 : a point location 
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 S: space 
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(2) Geo-atoms  },,{ iiii TS   

All geographic information can be decomposed into 

point sets or geo-atoms. An individual (i) geo-atom (
i ) 

consists of geo-semantics (
i ) measured, observed, or 

inferred at a point location and a given time )( iT . 

Points are used here to refer to a location within which a 

piece of geographic information can be associated; hence, 

cells are a specific type of point.  We consider this 

atomic form (i.e. geo-atoms) of geo-semantics at a 

location at a given time the most primitive unit of 

geographic information; all other types of geographic 

information consist of aggregations of the atomic form, 

often over infinite point sets. Our premise is that points 

are the most primitive spatiotemporal element with 

which information can be associated to space and time. 

Higher-dimensional properties of lines, areas, and 

volumes are aggregates of point sets by thresholding geo-

semantics or assuming uniform geo-semantics in the 

aggregation. For example, property lots are aggregates of 

point sets that have the same ownership, contours are 

aggregates of point sets based on elevation criteria, and 

the State of Hawaii is an aggregation of a point set under 

the administrative authority of the State of Hawaii. 

Direct measurements of lines (e.g. distance or length) are 

not considered as geo-semantics at individual locations 

but are relationships (in the case of distance) between 

location points or secondary properties (in the case of 

length) by identifying all linearly aligned location points 

that satisfy a given geo-semantic threshold. 

Geo-objects ),(},,,{ TSaggregateTSID ST   

Geo-objects are what we identify as individuals in 

geography that cannot be further divided into individuals 

of the same kind. We consider that a geo-object is a 

uniquely identified (indicated by ID) location point set (S) 

and time set (T) in which geo-semantics meet certain 

requirements;
STTS ,,  indicates a qualified set of geo-

semantics 
ST  over space S and time T of interest. 

Notation (S) differs from notation (Si) in that S denotes a 

point set whereas Si marks an individual point. The same 

convention is applied to other notations throughout the 

paper. Under the consideration that geo-atoms are the 

most primitive units of geographic information, a geo-

object is a function that aggregates geo-atoms )( within 

space (S) and time (T) of interest. Locations of the point 

set may be represented by Cartesian coordinates, relative 

coordinates, or mathematical expressions (e.g., circles, 

arcs of ellipses, and Bézier curves) and may include 

disjoint subsets for geo-objects that consist of multiple 

parts (e.g., multipoints, multipart polylines, multipart 

polygons as recognized in the OGC Simple Feature 

Specification, www.opengeospatial.org).  

Each geo-object must have a unique identifier (ID) to 

distinguish itself from the others. In some cases, the 

spatial location and extent of a geo-object are defined 

before geo-semantics are measured. Examples are census 

enumeration zones and lakes. Most current GIS data 

models take a space-centered approach that recognizes 

geographic objects by location and ascribes geometry to 

these objects. In doing so, new object identities are 

needed when changes occur to location or the geometry 

of an existing object. Alternatively, the formation of 

census enumeration zones can be considered as an 

outcome of a spatial aggregation based on geo-semantics 

which have been measured previously (e.g., previous 

census) or are easily distinguished without measurements 

(e.g., locations of water or not water). From this 

perspective, a geo-object identity is not determined by 

location or geometry, but by its intrinsic properties that 

make it a geo-object of its kind as judged by geo-

semantic requirements. 

In addition to properties assumed uniform over the 

object (spatially intensive properties), properties at the 

set level are likely to emerge and may include measures 

of the point set (e.g., length, area) and integrals of 

spatially intensive properties. These set measures and 

integrals are spatially extensive properties which are 

closely dependent on and cannot be separated from line 

or area objects. The contrast between spatially intensive 

and extensive variables is described in [1]. For example, 

population counts are a function of the area of the 

reporting zone. When a county is subdivided into two 

smaller units, the population density (a spatially intensive 

property) in its subdivisions may remain the same as the 

county population density, but population counts (a 

spatially extensive property) are likely to be different 

(unless one of the subdivisions has no population). 

Furthermore, many geo-objects have properties that are 

transitional in space. Their identities cannot be 

determined through aggregation of the geo-atoms that 

result from simply geo-semantic thresholding. Such a 
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geo-object is characterized by its indeterminate 

boundaries and will be conceptualized here as a fuzzy 

point set [2]. 

When time is a consideration, the identities of geo-

objects are critical to track through changes in location, 

geometry, and properties [3]. Since a geo-object is an 

aggregate of geo-atoms under a set of geo-semantic 

criteria, its identity is determined by the defined geo-

semantic criteria and spatial and temporal constraints to 

the aggregation. The defined geo-semantic criteria 

specify the range or discrete values (e.g. domain) within 

which geo-semantics can be considered as the properties 

of a geo-object. Only when a geo-atom has geo-semantic 

values at 
ii TS ,  are within the domain, the geo-atom is 

part of the geo-object. When geo-semantic values meet 

the geo-semantic criteria at 
ii TS ,  but not at

1, ii TS , the 

geo-object ceases to exist at iS either by moving out of 

the location, dissipating entirely, or transforming into 

another geo-object with a different identity.  

Once the identity of a geo-object is determined, its 

spatiotemporal path and behavior can be represented and 

tracked by lifelines [4]; and its spatiotemporal domain of 

accessibility can be represented by space-time prisms [5]. 

For geo-objects with geometry of higher dimensions (e.g. 

lines or polygons) or with multiple parts, space-time 

volumes are necessary to represent their spatiotemporal 

extent as elaborated in the SPAN ontology [6]. While 

observations of a lifeline or spatiotemporal geo-object 

are discrete, various interpolation methods (e.g. linear or 

curvilinear) may be applied to estimate intermediate 

locations and geometry between temporal observations. 

In addition to trajectories, additional parameters are 

necessary to record geo-objects which may change 

geometry over time. An example is the helix 

representation that uses a spline to track the location of a 

geo-object’s centroid and prongs to record the extension 

of the geo-object in different directions at each point in 

time [7]. 

Aggregation of geo-atoms to form a geo-object is 

subject to spatial and temporal constraints by the nature 

of the geo-object, and such spatiotemporal constraints 

can be used to select appropriate interpolation methods 

as discussed above. A geo-object only exists in certain 

spatial and temporal extents bound by biological, 

physical, or administrative processes through which 

geographic entities are formed. At the highest level, no 

geo-objects on Earth can have a spatial extent greater 

than the surface of the Earth. Under constraints of 

physical processes, the largest hurricane recorded 

(Typhoon Tip) extended out to 1,100 km, and the 

smallest (Cyclone Tracy) was about 50km in radius. In 

addition, geo-objects have life expectancy; some may be 

ephemeral (e.g., rainstorms), but others can be long-

lasting (e.g. mountains). Some geo-objects must be 

conterminous in space and time (e.g., a reservoir or a 

pollution plume), but others may have spatially or 

temporally disjoint parts (e.g., a wildfire or a country).  

In summary, geo-objects are formed by aggregating 

geo-atoms under spatial, temporal, and geo-semantic 

constraints. Identities of geo-objects are recognized by 

spatial and temporal extents in meeting certain geo-

semantic requirements. Changes to a geo-object over 

time can be tracked based on identities. Some geo-

objects may have spatially or temporally disjoint parts. 

These geo-objects consist of discrete point sets

STTS ,, , but these discrete point sets are united by a 

common geo-object identity. On the one hand, geo-

objects are ‘discovered” by spatiotemporal aggregation 

of locations with qualified geo-semantics; in other words, 

geo-semantics are measured prior to the identification of 

geo-objects. On the other hand, geo-objects may be 

recognized by distinct geo-semantic discontinuity which 

enforces the perception of boundaries, and consequently 

the extents over which spatial and temporal aggregation 

takes place. In such cases, geo-semantics are 

characterized after the identification of geo-objects.  

2.4. Solution and Result 

Using the NFLIS data provided, build a mathematical 

model to describe the spread and characteristics of the 

reported synthetic opioid and heroin incidents (cases) in 

and between the five states and their counties over time. 

Using the model, identify any possible locations where 

specific opioid use might have started in each of the five 

states.

 
Figure 2. County total count of the indicated substance in 

Kentucky 
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Figure 3. County total count of the indicated substance in Ohio 

  
Figure 4. County total count of the indicated substance in 

Tennessee

 

Figure 5. County total count of the indicated substance in 

Virginia 

 
Figure 6. County total count of the indicated substance in West 

Virginia 

 
Figure 7. County total count of the indicated substance 

We predict the location and time they will occur as 

follows. 

Location (County, State) Time (Year) 

GUERNSEY, OH 2018 

GREEN, KY 2018 

EDMONSON, KY 2019 

CLARK, OH 2018 

3. Strength and Weakness 

Strength: Most current GIS data models take a space-

centered approach that recognizes geographic objects by 

location and ascribes geometry to these objects. In doing 

so, new object identities are needed when changes occur 

to location or the geometry of an existing object. 
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Weakness: A geo-object identity is not determined by 

location or geometry, but by its intrinsic properties that 

make it a geo-object of its kind as judged by geo-

semantic requirements. “Portage” for example, was used 

as the county name for two spatially disjoint areas in 

Wisconsin at different times. When state-county names 

are used as county identifiers, the identity of Portage 

county is not tied to a particular geographic location.   
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